In situ SEM study of lithium intercalation in individual V2O5 nanowires.
نویسندگان
چکیده
Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. Here we report on in situ SEM study of lithiation in a V2O5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation, formation of a solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. The SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.
منابع مشابه
Mapping polaronic states and lithiation gradients in individual V2O5 nanowires
The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transm...
متن کاملPorous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage
A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous...
متن کاملAtomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability
V2O5 xerogel films were fabricated by casting V2O5 sols onto fluorine-doped tin oxide glass substrates at room temperature. Five, ten and twenty atomic layers of Al2O3 were grown onto as-fabricated films respectively. The bare film and Al2O3-deposited films all exhibited hydrous V2O5 phase only. Electrochemical impedance spectroscopy study revealed increased surface charge-transfer resistance o...
متن کاملEnhancement of intercalation properties of V2O5 film by TiO2 addition.
Although it is well-known that TiO2 incorporation can greatly improve the cyclic stability of V2O5, the influences of TiO2 addition on the Li+ intercalation properties of V2O5 remain an issue of debate in literature. In this paper, we report on a systematic investigation of the preparation and intercalation properties of V2O5-TiO2 mixture films. The present work demonstrates that high Li+ inter...
متن کاملMechanism of Electrochemical Deposition and Coloration of Electrochromic V2O5 Nano Thin Films: an In Situ X-Ray Spectroscopy Study
Electrochromic switching devices have elicited considerable attention because these thin films are among the most promising materials for energy-saving applications. The vanadium oxide system is simple and inexpensive because only a single-layer film of this material is sufficient for coloration. Vanadium dioxide thin films are fabricated by electrochemical deposition and cyclic voltammetry. Ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2015